58.1.17 problem 17

Internal problem ID [9088]
Book : Second order enumerated odes
Section : section 1
Problem number : 17
Date solved : Wednesday, March 05, 2025 at 07:19:30 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x -\ln \left (2\right )+\ln \left (c_{1} {\mathrm e}^{-2 x}-c_{2} \right ) \]
Mathematica. Time used: 0.354 (sec). Leaf size: 48
ode=D[y[x],{x,2}]+(D[y[x],x])^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{2} \log \left (e^{2 x}\right )+\log \left (e^{2 x}+e^{2 c_1}\right )+c_2 \\ y(x)\to \frac {1}{2} \log \left (e^{2 x}\right )+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out