58.1.23 problem 23

Internal problem ID [9094]
Book : Second order enumerated odes
Section : section 1
Problem number : 23
Date solved : Wednesday, March 05, 2025 at 07:19:40 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+y&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 61
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -2 \left (\int _{}^{y}\frac {1}{\sqrt {2+4 \,{\mathrm e}^{-2 \textit {\_a}} c_{1} -4 \textit {\_a}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ 2 \left (\int _{}^{y}\frac {1}{\sqrt {2+4 \,{\mathrm e}^{-2 \textit {\_a}} c_{1} -4 \textit {\_a}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ \end{align*}
Mathematica. Time used: 0.823 (sec). Leaf size: 272
ode=D[y[x],{x,2}]+(D[y[x],x])^2+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} c_1-2 K[1]+1}}dK[1]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} c_1-2 K[2]+1}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} (-c_1)-2 K[1]+1}}dK[1]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[1]} c_1-2 K[1]+1}}dK[1]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} (-c_1)-2 K[2]+1}}dK[2]\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {2}}{\sqrt {2 e^{-2 K[2]} c_1-2 K[2]+1}}dK[2]\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-y(x) - Derivative(y(x), (x, 2))) + Derivative(y(x), x) cannot be solved by the factorable group method