58.1.36 problem 36

Internal problem ID [9107]
Book : Second order enumerated odes
Section : section 1
Problem number : 36
Date solved : Wednesday, March 05, 2025 at 07:23:55 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -c_{1} {\mathrm e}^{-x}-\frac {\sin \left (x \right )}{2}-\frac {\cos \left (x \right )}{2}+c_{2} \]
Mathematica. Time used: 0.11 (sec). Leaf size: 29
ode=D[y[x],{x,2}]+D[y[x],x]==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {\sin (x)}{2}-\frac {\cos (x)}{2}+c_1 \left (-e^{-x}\right )+c_2 \]
Sympy. Time used: 0.144 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} - \frac {\sin {\left (x \right )}}{2} - \frac {\cos {\left (x \right )}}{2} \]