58.1.47 problem 47

Internal problem ID [9118]
Book : Second order enumerated odes
Section : section 1
Problem number : 47
Date solved : Wednesday, March 05, 2025 at 07:24:36 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{2} {y^{\prime \prime }}^{2}+y^{\prime }&=0 \end{align*}

Maple. Time used: 0.146 (sec). Leaf size: 233
ode:=y(x)^2*diff(diff(y(x),x),x)^2+diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_{1} \\ y &= 0 \\ -4 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ -4 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (-12 \ln \left (\textit {\_a} \right )+8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (-x -c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (-i \sqrt {3}-1\right )^{2}} &= 0 \\ \frac {-16 \left (\int _{}^{y}\frac {1}{\left (12 \ln \left (\textit {\_a} \right )-8 c_{1} \right )^{{2}/{3}}}d \textit {\_a} \right )+2 i \left (x +c_{2} \right ) \sqrt {3}+2 x +2 c_{2}}{\left (1-i \sqrt {3}\right )^{2}} &= 0 \\ \end{align*}
Mathematica. Time used: 2.388 (sec). Leaf size: 449
ode=y[x]^2*D[y[x],{x,2}]^2+D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i (-c_1)} (-\log (\text {$\#$1})-i (-1) c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i (-1) c_1-\log (\text {$\#$1})\right )}{(-i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{-i c_1} (-\log (\text {$\#$1})-i c_1){}^{2/3} \Gamma \left (\frac {1}{3},-i c_1-\log (\text {$\#$1})\right )}{(c_1-i \log (\text {$\#$1})){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i (-c_1)} (-\log (\text {$\#$1})+i (-c_1)){}^{2/3} \Gamma \left (\frac {1}{3},i (-c_1)-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})-c_1){}^{2/3}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\left (\frac {2}{3}\right )^{2/3} e^{i c_1} (-\log (\text {$\#$1})+i c_1){}^{2/3} \Gamma \left (\frac {1}{3},i c_1-\log (\text {$\#$1})\right )}{(i \log (\text {$\#$1})+c_1){}^{2/3}}\&\right ][x+c_2] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)**2*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve y(x)**2*Derivative(y(x), (x, 2))**2 + Derivative(y(x), x)