Internal
problem
ID
[9134]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
12
Date
solved
:
Wednesday, March 05, 2025 at 07:33:49 AM
CAS
classification
:
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=3*diff(diff(y(x),x),x)+cos(x)*diff(y(x),x)+sin(y(x))*diff(y(x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=3*D[y[x],{x,2}]+Cos[x]*D[y[x],x]+Sin[y[x]]*(D[y[x],x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sin(y(x))*Derivative(y(x), x)**2 + cos(x)*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ZeroDivisionError : polynomial division