58.2.11 problem 12

Internal problem ID [9134]
Book : Second order enumerated odes
Section : section 2
Problem number : 12
Date solved : Wednesday, March 05, 2025 at 07:33:49 AM
CAS classification : [_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 27
ode:=3*diff(diff(y(x),x),x)+cos(x)*diff(y(x),x)+sin(y(x))*diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{}^{y}{\mathrm e}^{-\frac {\cos \left (\textit {\_a} \right )}{3}}d \textit {\_a} -c_{1} \left (\int {\mathrm e}^{-\frac {\sin \left (x \right )}{3}}d x \right )-c_{2} = 0 \]
Mathematica. Time used: 1.388 (sec). Leaf size: 67
ode=3*D[y[x],{x,2}]+Cos[x]*D[y[x],x]+Sin[y[x]]*(D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\exp \left (-\int _1^{K[3]}-\frac {1}{3} \sin (K[1])dK[1]\right )dK[3]\&\right ]\left [\int _1^x-\exp \left (-\int _1^{K[4]}\frac {1}{3} \cos (K[2])dK[2]\right ) c_1dK[4]+c_2\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(y(x))*Derivative(y(x), x)**2 + cos(x)*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ZeroDivisionError : polynomial division