Internal
problem
ID
[9152]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
29
Date
solved
:
Wednesday, March 05, 2025 at 07:35:01 AM
CAS
classification
:
[_Lienard]
ode:=cos(x)^2*diff(diff(y(x),x),x)-2*cos(x)*sin(x)*diff(y(x),x)+cos(x)^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Cos[x]^2*D[y[x],{x,2}]-2*Cos[x]*Sin[x]*D[y[x],x]+y[x]*Cos[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)*cos(x)**2 - 2*sin(x)*cos(x)*Derivative(y(x), x) + cos(x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False