59.1.11 problem 11

Internal problem ID [9183]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 11
Date solved : Wednesday, March 05, 2025 at 07:37:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 30
ode:=(x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} \left (x +3\right )+\frac {c_{2} \left (2 x^{2}+12 x +9\right )}{\sqrt {x}\, \sqrt {6+x}} \]
Mathematica. Time used: 0.675 (sec). Leaf size: 103
ode=(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\left (9 \sqrt {\pi } c_2 \sqrt [4]{-x (x+6)} Q_{\frac {3}{2}}^{\frac {1}{2}}\left (\frac {x}{3}+1\right )+\sqrt {6} c_1 \left (2 x^2+12 x+9\right )\right ) \exp \left (\int _1^x-\frac {K[1]+3}{2 K[1] (K[1]+6)}dK[1]\right )}{9 \sqrt {\pi } \sqrt [4]{-x (x+6)}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*x + 9)*Derivative(y(x), x) + (x**2 + 6*x)*Derivative(y(x), (x, 2)) - 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False