59.1.26 problem 26

Internal problem ID [9198]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 26
Date solved : Wednesday, March 05, 2025 at 07:37:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 37
ode:=(-x^2+4)*diff(diff(y(x),x),x)+x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x^{2}-4\right )^{{3}/{4}} \left (\operatorname {LegendreP}\left (\sqrt {3}-\frac {1}{2}, \frac {3}{2}, \frac {x}{2}\right ) c_{1} +\operatorname {LegendreQ}\left (\sqrt {3}-\frac {1}{2}, \frac {3}{2}, \frac {x}{2}\right ) c_{2} \right ) \]
Mathematica. Time used: 0.05 (sec). Leaf size: 58
ode=(4-x^2)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^2-4\right )^{3/4} \left (c_1 P_{-\frac {1}{2}+\sqrt {3}}^{\frac {3}{2}}\left (\frac {x}{2}\right )+c_2 Q_{-\frac {1}{2}+\sqrt {3}}^{\frac {3}{2}}\left (\frac {x}{2}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (4 - x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False