59.1.412 problem 424

Internal problem ID [9584]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 424
Date solved : Monday, January 27, 2025 at 06:04:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 25

dsolve(x^2*diff(y(x),x$2)-(x-1875/10000)*y(x)=0,y(x), singsol=all)
 
\[ y = x^{{1}/{4}} \left (c_{1} \sinh \left (2 \sqrt {x}\right )+c_{2} \cosh \left (2 \sqrt {x}\right )\right ) \]

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 41

DSolve[x^2*D[y[x],{x,2}]-(x-1875/10000)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{2} e^{-2 \sqrt {x}} \sqrt [4]{x} \left (2 c_1 e^{4 \sqrt {x}}-c_2\right ) \]