59.1.34 problem 35

Internal problem ID [9206]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 35
Date solved : Wednesday, March 05, 2025 at 07:37:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 14
ode:=x*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+(x+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_{2} x^{3}+c_{1} \right ) \]
Mathematica. Time used: 0.047 (sec). Leaf size: 25
ode=x*D[y[x],{x,2}]-(2*x+2)*D[y[x],x]+(x+2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} e^{x+1} \left (c_2 x^3+3 c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x + 2)*y(x) - (2*x + 2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False