59.1.422 problem 434

Internal problem ID [9594]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 434
Date solved : Monday, January 27, 2025 at 06:04:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 12

dsolve((1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} x +{\mathrm e}^{x} c_{2} \]

Solution by Mathematica

Time used: 0.150 (sec). Leaf size: 90

DSolve[(1-x)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {K[1]-2}{2 (K[1]-1)}dK[1]-\frac {1}{2} \int _1^x-\frac {K[2]}{K[2]-1}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {K[1]-2}{2 (K[1]-1)}dK[1]\right )dK[3]+c_1\right ) \]