59.1.46 problem 48

Internal problem ID [9218]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 48
Date solved : Wednesday, March 05, 2025 at 07:37:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (2-x \right ) y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 49
ode:=x^2*(1-x)*diff(diff(y(x),x),x)+x*(x+4)*diff(y(x),x)+(-x+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x c_{2} \left (x^{2}+6 x +3\right ) \ln \left (x \right )+c_{1} x^{3}+\left (6 c_{1} +51 c_{2} \right ) x^{2}+\left (3 c_{1} +48 c_{2} \right ) x +c_{2}}{x^{2}} \]
Mathematica. Time used: 0.853 (sec). Leaf size: 119
ode=x^2*(1-x)*D[y[x],{x,2}]+x*(4+x)*D[y[x],x]+(2-x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^2+6 x+3\right ) \exp \left (\int _1^x\left (\frac {1}{K[1]}+\frac {5}{2-2 K[1]}\right )dK[1]-\frac {1}{2} \int _1^x\frac {K[2]+4}{K[2]-K[2]^2}dK[2]\right ) \left (c_2 \int _1^x\frac {\exp \left (-2 \int _1^{K[3]}\left (\frac {1}{K[1]}+\frac {5}{2-2 K[1]}\right )dK[1]\right )}{\left (K[3]^2+6 K[3]+3\right )^2}dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(x + 4)*Derivative(y(x), x) + (2 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False