7.12.2 problem 2

Internal problem ID [384]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.6 (Forced oscillations and resonance). Problems at page 171
Problem number : 2
Date solved : Wednesday, February 05, 2025 at 03:26:38 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(x(t),t$2)+4*x(t)=5*sin(3*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)
 
\[ x \left (t \right ) = \frac {3 \sin \left (2 t \right )}{2}-\sin \left (3 t \right ) \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 18

DSolve[{D[x[t],{t,2}]+4*x[t]==5*Sin[3*t],{x[0]==0,Derivative[1][x][0] ==0}},x[t],t,IncludeSingularSolutions -> True]
 
\[ x(t)\to 3 \sin (t) \cos (t)-\sin (3 t) \]