Internal
problem
ID
[9319]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
149
Date
solved
:
Wednesday, March 05, 2025 at 07:47:27 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=9*x^2*diff(diff(y(x),x),x)-3*x*(-2*x^2+7)*diff(y(x),x)+(2*x^2+25)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=9*x^2*D[y[x],{x,2}]-3*x*(7-2*x^2)*D[y[x],x]+(25+2*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2*Derivative(y(x), (x, 2)) - 3*x*(7 - 2*x**2)*Derivative(y(x), x) + (2*x**2 + 25)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False