59.1.156 problem 158

Internal problem ID [9328]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 158
Date solved : Wednesday, March 05, 2025 at 07:47:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (1+x \right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (1+x \right ) y&=0 \end{align*}

Maple. Time used: 0.040 (sec). Leaf size: 19
ode:=4*x^2*(1+x)*diff(diff(y(x),x),x)+8*x^2*diff(y(x),x)+(1+x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {x}\, \left (c_{2} \ln \left (x \right )+c_{1} \right )}{x +1} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 24
ode=4*x^2*(1+x)*D[y[x],{x,2}]+8*x^2*D[y[x],x]+(1+x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sqrt {x} (c_2 \log (x)+c_1)}{x+1} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*(x + 1)*Derivative(y(x), (x, 2)) + 8*x**2*Derivative(y(x), x) + (x + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False