59.1.168 problem 170

Internal problem ID [9340]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 170
Date solved : Wednesday, March 05, 2025 at 07:47:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (1+x \right ) y^{\prime \prime }+4 x \left (1+2 x \right ) y^{\prime }-\left (1+3 x \right ) y&=0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 28
ode:=4*x^2*(1+x)*diff(diff(y(x),x),x)+4*x*(2*x+1)*diff(y(x),x)-(3*x+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\ln \left (x +1\right ) c_{2} x -\ln \left (x \right ) c_{2} x +c_{1} x -c_{2}}{\sqrt {x}} \]
Mathematica. Time used: 0.252 (sec). Leaf size: 96
ode=4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+2*x)*D[y[x],x]-(1+3*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\left (\frac {1}{2 K[1]+2}+\frac {1}{K[1]}\right )dK[1]-\frac {1}{2} \int _1^x\left (\frac {1}{K[2]+1}+\frac {1}{K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {3 K[1]+2}{2 K[1]^2+2 K[1]}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*(x + 1)*Derivative(y(x), (x, 2)) + 4*x*(2*x + 1)*Derivative(y(x), x) - (3*x + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False