Internal
problem
ID
[9353]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
183
Date
solved
:
Wednesday, March 05, 2025 at 07:47:57 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*(1+x)*diff(diff(y(x),x),x)+4*x*(4*x+1)*diff(y(x),x)-(49+27*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*(1+x)*D[y[x],{x,2}]+4*x*(1+4*x)*D[y[x],x]-(49+27*x)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*(x + 1)*Derivative(y(x), (x, 2)) + 4*x*(4*x + 1)*Derivative(y(x), x) - (27*x + 49)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False