Internal
problem
ID
[9363]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
193
Date
solved
:
Wednesday, March 05, 2025 at 07:48:06 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*(x^2+1)*diff(diff(y(x),x),x)+4*x*(x^2+2)*diff(y(x),x)-(x^2+15)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*(1+x^2)*D[y[x],{x,2}]+4*x*(2+x^2)*D[y[x],x]-(15+x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + 4*x*(x**2 + 2)*Derivative(y(x), x) - (x**2 + 15)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False