59.1.577 problem 593

Internal problem ID [9749]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 593
Date solved : Monday, January 27, 2025 at 06:13:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (3+4 x \right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.031 (sec). Leaf size: 19

dsolve(9*x^2*(3+x)*diff(y(x),x$2)+3*x*(3+7*x)*diff(y(x),x)+(3+4*x)*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {x^{{1}/{3}} \left (c_{2} \ln \left (x \right )+c_{1} \right )}{x +3} \]

Solution by Mathematica

Time used: 0.286 (sec). Leaf size: 49

DSolve[9*x^2*(3+x)*D[y[x],{x,2}]+3*x*(3+7*x)*D[y[x],x]+(3+4*x)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \sqrt {x} (c_2 \log (x)+c_1) \exp \left (-\frac {1}{2} \int _1^x\left (\frac {2}{K[1]+3}+\frac {1}{3 K[1]}\right )dK[1]\right ) \]