59.1.204 problem 207

Internal problem ID [9376]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 207
Date solved : Wednesday, March 05, 2025 at 07:48:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 47
ode:=2*t^2*diff(diff(y(t),t),t)+(t^2-t)*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {t}{2}} \left (\operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {-t}}{2}\right ) 2^{{3}/{4}} \sqrt {\pi }\, c_{1} t +4 \sqrt {t}\, \sqrt {-t}\, c_{2} \right )}{4 \sqrt {-t}} \]
Mathematica. Time used: 0.125 (sec). Leaf size: 46
ode=2*t^2*D[y[t],{t,2}]+(t^2-t)*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-t/2} \left (c_2 \sqrt {t}+\sqrt {2} c_1 \sqrt {-t} \Gamma \left (\frac {1}{2},-\frac {t}{2}\right )\right ) \]
Sympy. Time used: 1.426 (sec). Leaf size: 474
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*t**2*Derivative(y(t), (t, 2)) + (t**2 - t)*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \text {Solution too large to show} \]