Internal
problem
ID
[9390]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
221
Date
solved
:
Wednesday, March 05, 2025 at 07:48:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=z*diff(diff(y(z),z),z)+(2*z-3)*diff(y(z),z)+4/z*y(z) = 0; dsolve(ode,y(z), singsol=all);
ode=z*D[y[z],{z,2}]+(2*z-3)*D[y[z],z]+4/z*y[z]==0; ic={}; DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
from sympy import * z = symbols("z") y = Function("y") ode = Eq(z*Derivative(y(z), (z, 2)) + (2*z - 3)*Derivative(y(z), z) + 4*y(z)/z,0) ics = {} dsolve(ode,func=y(z),ics=ics)