59.1.231 problem 234

Internal problem ID [9403]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 234
Date solved : Wednesday, March 05, 2025 at 07:48:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x \left (1+2 x \right ) y^{\prime }+2 \left (4 x -1\right ) y&=0 \end{align*}

Maple. Time used: 0.053 (sec). Leaf size: 32
ode:=2*x^2*diff(diff(y(x),x),x)-x*(2*x+1)*diff(y(x),x)+2*(4*x-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} x^{2} \left (4 x^{2}-36 x +63\right )}{63}+\frac {c_{2} \operatorname {hypergeom}\left (\left [-\frac {9}{2}\right ], \left [-\frac {3}{2}\right ], x\right )}{\sqrt {x}} \]
Mathematica. Time used: 1.857 (sec). Leaf size: 61
ode=2*x^2*D[y[x],{x,2}]-x*(1+2*x)*D[y[x],x]+2*(4*x-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} x^2 \left (4 x^2-36 x+63\right ) \left (c_2 \int _1^x\frac {16 e^{K[1]}}{K[1]^{7/2} \left (4 K[1]^2-36 K[1]+63\right )^2}dK[1]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - x*(2*x + 1)*Derivative(y(x), x) + (8*x - 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False