Internal
problem
ID
[17]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2.
Problems
at
page
17
Problem
number
:
17
Date
solved
:
Tuesday, March 04, 2025 at 10:38:33 AM
CAS
classification
:
[[_2nd_order, _quadrature]]
With initial conditions
ode:=diff(diff(x(t),t),t) = 1/(t+1)^3; ic:=x(0) = 0, D(x)(0) = 0; dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],{t,2}]==1/(1+t)^3; ic={x[0]==0,Derivative[1][x][0] ==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(Derivative(x(t), (t, 2)) - 1/(t + 1)**3,0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)