59.1.653 problem 670

Internal problem ID [9825]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 670
Date solved : Monday, January 27, 2025 at 06:14:41 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x y^{\prime \prime }-x y^{\prime }+2 y&=0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 33

dsolve(4*x*diff(y(x),x$2)-x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {x c_{2} \left (x -8\right ) \operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{16}+\frac {c_{2} \left (x -4\right ) {\mathrm e}^{\frac {x}{4}}}{4}+c_{1} x \left (x -8\right ) \]

Solution by Mathematica

Time used: 0.194 (sec). Leaf size: 42

DSolve[4*x*D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (x-8) x \left (c_2 \int _1^x\frac {e^{\frac {K[1]}{4}}}{(K[1]-8)^2 K[1]^2}dK[1]+c_1\right ) \]