59.1.697 problem 714

Internal problem ID [9869]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 714
Date solved : Monday, January 27, 2025 at 06:15:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 28

dsolve(diff(u(x),x$2)-2/x*diff(u(x),x)-a^2*u(x)=0,u(x), singsol=all)
 
\[ u = c_{1} {\mathrm e}^{a x} \left (a x -1\right )+c_{2} {\mathrm e}^{-a x} \left (a x +1\right ) \]

Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 68

DSolve[D[u[x],{x,2}]-2/x*D[u[x],x]-a^2*u[x]==0,u[x],x,IncludeSingularSolutions -> True]
 
\[ u(x)\to \frac {\sqrt {\frac {2}{\pi }} \sqrt {x} ((i a c_2 x+c_1) \sinh (a x)-(a c_1 x+i c_2) \cosh (a x))}{a \sqrt {-i a x}} \]