59.1.705 problem 722

Internal problem ID [9877]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 722
Date solved : Monday, January 27, 2025 at 06:15:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}}&=0 \end{align*}

Solution by Maple

Time used: 0.085 (sec). Leaf size: 37

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(4*x^2-9*a^2)/(4*a^2)*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {\left (i x +a \right ) c_{2} {\mathrm e}^{-\frac {i x}{a}}+\left (-i x +a \right ) c_{1} {\mathrm e}^{\frac {i x}{a}}}{x^{{3}/{2}}} \]

Solution by Mathematica

Time used: 0.079 (sec). Leaf size: 62

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^2-9*a^2)/(4*a^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to -\frac {\sqrt {\frac {2}{\pi }} \left ((a c_2+c_1 x) \cos \left (\frac {x}{a}\right )+(c_2 x-a c_1) \sin \left (\frac {x}{a}\right )\right )}{x \sqrt {\frac {x}{a}}} \]