59.1.740 problem 760

Internal problem ID [9912]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 760
Date solved : Monday, January 27, 2025 at 06:15:41 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-2 x +10\right ) y^{\prime \prime }+x y^{\prime }-4 y&=0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 31

dsolve((x^2-2*x+10)*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)
 
\[ y = 3 c_{2} \left (x -1+3 i\right )^{\frac {1}{2}-\frac {i}{6}} \left (x -\frac {4}{3}\right ) \left (x -1-3 i\right )^{\frac {1}{2}+\frac {i}{6}}+c_{1} \left (x^{2}-\frac {4}{3} x +5\right ) \]

Solution by Mathematica

Time used: 0.707 (sec). Leaf size: 125

DSolve[(x^2-2*x+10)*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{3} (3 x-4) \exp \left (\int _1^x\frac {3 K[1]-4}{2 (K[1]-2) K[1]+20}dK[1]-\frac {1}{2} \int _1^x\frac {K[2]}{(K[2]-2) K[2]+10}dK[2]\right ) \left (c_2 \int _1^x\frac {9 \exp \left (-2 \int _1^{K[3]}\frac {3 K[1]-4}{2 \left (K[1]^2-2 K[1]+10\right )}dK[1]\right )}{(4-3 K[3])^2}dK[3]+c_1\right ) \]