59.1.358 problem 365

Internal problem ID [9530]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 365
Date solved : Wednesday, March 05, 2025 at 07:50:31 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} u^{\prime \prime }+\frac {u}{x^{2}}&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 29
ode:=diff(diff(u(x),x),x)+1/x^2*u(x) = 0; 
dsolve(ode,u(x), singsol=all);
 
\[ u = \sqrt {x}\, \left (c_{1} \sin \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )+c_{2} \cos \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )\right ) \]
Mathematica. Time used: 0.026 (sec). Leaf size: 42
ode=D[u[x],{x,2}]+1/x^2*u[x]==0; 
ic={}; 
DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
 
\[ u(x)\to \sqrt {x} \left (c_1 \cos \left (\frac {1}{2} \sqrt {3} \log (x)\right )+c_2 \sin \left (\frac {1}{2} \sqrt {3} \log (x)\right )\right ) \]
Sympy. Time used: 0.098 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
u = Function("u") 
ode = Eq(Derivative(u(x), (x, 2)) + u(x)/x**2,0) 
ics = {} 
dsolve(ode,func=u(x),ics=ics)
 
\[ u{\left (x \right )} = \sqrt {x} \left (C_{1} \sin {\left (\frac {\sqrt {3} \log {\left (x \right )}}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} \log {\left (x \right )}}{2} \right )}\right ) \]