59.1.761 problem 783

Internal problem ID [9933]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 783
Date solved : Monday, January 27, 2025 at 06:15:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }+y x&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 51

dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)+x*y(x)=0,y(x), singsol=all)
 
\[ y = c_{2} \left (-x^{3}\right )^{{1}/{3}} 3^{{2}/{3}} \Gamma \left (\frac {2}{3}\right )-c_{2} \left (-x^{3}\right )^{{1}/{3}} 3^{{2}/{3}} \Gamma \left (\frac {2}{3}, -\frac {x^{3}}{3}\right )+3 c_{2} {\mathrm e}^{\frac {x^{3}}{3}}+c_{1} x \]

Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 41

DSolve[D[y[x],{x,2}]-x^2*D[y[x],x]+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 x-\frac {c_2 \sqrt [3]{-x^3} \Gamma \left (-\frac {1}{3},-\frac {x^3}{3}\right )}{3 \sqrt [3]{3}} \]