Internal
problem
ID
[9580]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
420
Date
solved
:
Wednesday, March 05, 2025 at 07:51:12 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x + 9)*Derivative(y(x), x) + (x**2 + 6*x)*Derivative(y(x), (x, 2)) - 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False