7.2.18 problem 20

Internal problem ID [36]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.3. Problems at page 27
Problem number : 20
Date solved : Friday, March 14, 2025 at 01:25:18 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.270 (sec). Leaf size: 157
ode:=diff(y(x),x) = x^2-y(x)^2; 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \left \{\begin {array}{cc} \frac {\left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \pi \left (-\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}+\pi \right )+2 \operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{\pi \left (-\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}+\pi \right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ 1 & x =0 \\ \frac {\left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \pi \left (\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}+\pi \right )-2 \operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right ) x}{\pi \left (\Gamma \left (\frac {3}{4}\right )^{2} \sqrt {2}+\pi \right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+2 \operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & 0<x \end {array}\right . \]
Mathematica. Time used: 0.595 (sec). Leaf size: 151
ode=D[y[x],x]==x^2-y[x]^2; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 i x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+(1+i) \sqrt {2} \operatorname {Gamma}\left (\frac {3}{4}\right ) \left (i x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )}{2 x \left ((1+i) \sqrt {2} \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list