Internal
problem
ID
[9620]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
462
Date
solved
:
Wednesday, March 05, 2025 at 07:51:44 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-2*x)*diff(diff(y(x),x),x)+(-x^2+2)*diff(y(x),x)+(2*x-2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-2*x)*D[y[x],{x,2}]+(2-x^2)*D[y[x],x]+(2*x-2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2 - x**2)*Derivative(y(x), x) + (2*x - 2)*y(x) + (x**2 - 2*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False