59.1.452 problem 466

Internal problem ID [9624]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 466
Date solved : Wednesday, March 05, 2025 at 07:51:47 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 15
ode:=4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x} \left (c_{2} x +c_{1} \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 21
ode=4*x^2*D[y[x],{x,2}]+(4*x-8*x^2)*D[y[x],x]+(4*x^2-4*x-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^x (c_2 x+c_1)}{\sqrt {x}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + (-8*x**2 + 4*x)*Derivative(y(x), x) + (4*x**2 - 4*x - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False