59.1.462 problem 477

Internal problem ID [9634]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 477
Date solved : Wednesday, March 05, 2025 at 07:51:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 17
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(x^2+6)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} \left (\sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2} \right ) \]
Mathematica. Time used: 0.036 (sec). Leaf size: 37
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(x^2+6)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{-i x} x^2 \left (2 c_1-i c_2 e^{2 i x}\right ) \]
Sympy. Time used: 0.217 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + (x**2 + 6)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{\frac {5}{2}} \left (C_{1} J_{\frac {1}{2}}\left (x\right ) + C_{2} Y_{\frac {1}{2}}\left (x\right )\right ) \]