59.1.464 problem 479

Internal problem ID [9636]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 479
Date solved : Wednesday, March 05, 2025 at 07:51:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 14
ode:=4*x^2*diff(diff(y(x),x),x)-4*x*(1+x)*diff(y(x),x)+(2*x+3)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_{1} +{\mathrm e}^{x} c_{2} \right ) \sqrt {x} \]
Mathematica. Time used: 0.047 (sec). Leaf size: 25
ode=4*x^2*D[y[x],{x,2}]-4*x*(x+1)*D[y[x],x]+(2*x+3)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {e} \sqrt {x} \left (c_2 e^x+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 4*x*(x + 1)*Derivative(y(x), x) + (2*x + 3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False