Internal
problem
ID
[9642]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
485
Date
solved
:
Wednesday, March 05, 2025 at 07:52:00 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(x^2+2)*diff(diff(y(x),x),x)+2*x*(x^2+5)*diff(y(x),x)+2*(-x^2+3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**2 + 2)*Derivative(y(x), (x, 2)) + 2*x*(x**2 + 5)*Derivative(y(x), x) + (6 - 2*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False