7.2.22 problem 24

Internal problem ID [40]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.3. Problems at page 27
Problem number : 24
Date solved : Thursday, March 13, 2025 at 03:15:40 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x +\frac {y^{2}}{2} \end{align*}

With initial conditions

\begin{align*} y \left (-2\right )&=0 \end{align*}

Maple. Time used: 0.085 (sec). Leaf size: 68
ode:=diff(y(x),x) = x+1/2*y(x)^2; 
ic:=y(-2) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {2^{{2}/{3}} \left (\operatorname {AiryAi}\left (1, -\frac {2^{{2}/{3}} x}{2}\right ) \operatorname {AiryBi}\left (1, 2^{{2}/{3}}\right )-\operatorname {AiryBi}\left (1, -\frac {2^{{2}/{3}} x}{2}\right ) \operatorname {AiryAi}\left (1, 2^{{2}/{3}}\right )\right )}{\operatorname {AiryBi}\left (1, 2^{{2}/{3}}\right ) \operatorname {AiryAi}\left (-\frac {2^{{2}/{3}} x}{2}\right )-\operatorname {AiryBi}\left (-\frac {2^{{2}/{3}} x}{2}\right ) \operatorname {AiryAi}\left (1, 2^{{2}/{3}}\right )} \]
Mathematica. Time used: 0.133 (sec). Leaf size: 262
ode=D[y[x],x]==x+1/2*y[x]^2; 
ic={y[-2]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sqrt {2} x^{3/2} \left (2 \operatorname {BesselJ}\left (-\frac {4}{3},-\frac {4 i}{3}\right )+i \operatorname {BesselJ}\left (-\frac {1}{3},-\frac {4 i}{3}\right )-2 \operatorname {BesselJ}\left (\frac {2}{3},-\frac {4 i}{3}\right )\right ) \operatorname {BesselJ}\left (-\frac {2}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )-2 \sqrt {2} x^{3/2} \operatorname {BesselJ}\left (-\frac {2}{3},-\frac {4 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {4}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )+2 \operatorname {BesselJ}\left (-\frac {2}{3},-\frac {4 i}{3}\right ) \left (\sqrt {2} x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )-2 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )\right )}{x \left (4 \operatorname {BesselJ}\left (-\frac {2}{3},-\frac {4 i}{3}\right ) \operatorname {BesselJ}\left (-\frac {1}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )+\left (-2 \operatorname {BesselJ}\left (-\frac {4}{3},-\frac {4 i}{3}\right )-i \operatorname {BesselJ}\left (-\frac {1}{3},-\frac {4 i}{3}\right )+2 \operatorname {BesselJ}\left (\frac {2}{3},-\frac {4 i}{3}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{3},\frac {1}{3} \sqrt {2} x^{3/2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - y(x)**2/2 + Derivative(y(x), x),0) 
ics = {y(-2): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list