59.1.481 problem 497

Internal problem ID [9653]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 497
Date solved : Wednesday, March 05, 2025 at 07:52:11 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 55
ode:=(x^2-8*x+14)*diff(diff(y(x),x),x)-8*(x-4)*diff(y(x),x)+20*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} x^{5}+c_{2} x^{4}+4 \left (-35 c_{1} -4 c_{2} \right ) x^{3}+20 \left (56 c_{1} +5 c_{2} \right ) x^{2}+4 \left (-875 c_{1} -72 c_{2} \right ) x +4032 c_{1} +\frac {1604 c_{2}}{5} \]
Mathematica. Time used: 0.089 (sec). Leaf size: 77
ode=(x^2-8*x+14)*D[y[x],{x,2}]+8*(x-4)*D[y[x],x]+20*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1 P_{\frac {1}{2} i \left (i+\sqrt {31}\right )}^3\left (\frac {x-4}{\sqrt {2}}\right )+c_2 Q_{\frac {1}{2} i \left (i+\sqrt {31}\right )}^3\left (\frac {x-4}{\sqrt {2}}\right )}{\left (x^2-8 x+14\right )^{3/2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((32 - 8*x)*Derivative(y(x), x) + (x**2 - 8*x + 14)*Derivative(y(x), (x, 2)) + 20*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False