60.1.30 problem 30

Internal problem ID [10044]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 30
Date solved : Monday, January 27, 2025 at 06:19:23 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }+x^{-a -1} y^{2}-x^{a}&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 51

dsolve(diff(y(x),x) + x^(-a-1)*y(x)^2 - x^a=0,y(x), singsol=all)
 
\[ y = \frac {x^{\frac {1}{2}+a} \left (-\operatorname {BesselK}\left (a +1, 2 \sqrt {x}\right ) c_{1} +\operatorname {BesselI}\left (a +1, 2 \sqrt {x}\right )\right )}{\operatorname {BesselK}\left (a , 2 \sqrt {x}\right ) c_{1} +\operatorname {BesselI}\left (a , 2 \sqrt {x}\right )} \]

Solution by Mathematica

Time used: 0.396 (sec). Leaf size: 265

DSolve[D[y[x],x] + x^(-a-1)*y[x]^2 - x^a==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x^a \left (\sqrt {x} \operatorname {Gamma}(1-a) \operatorname {BesselI}\left (-a-1,2 \sqrt {x}\right )+\sqrt {x} \operatorname {Gamma}(1-a) \operatorname {BesselI}\left (1-a,2 \sqrt {x}\right )-a \operatorname {Gamma}(1-a) \operatorname {BesselI}\left (-a,2 \sqrt {x}\right )+(-1)^a c_1 \sqrt {x} \operatorname {Gamma}(a+1) \operatorname {BesselI}\left (a-1,2 \sqrt {x}\right )-(-1)^a a c_1 \operatorname {Gamma}(a+1) \operatorname {BesselI}\left (a,2 \sqrt {x}\right )+(-1)^a c_1 \sqrt {x} \operatorname {Gamma}(a+1) \operatorname {BesselI}\left (a+1,2 \sqrt {x}\right )\right )}{2 \left (\operatorname {Gamma}(1-a) \operatorname {BesselI}\left (-a,2 \sqrt {x}\right )+(-1)^a c_1 \operatorname {Gamma}(a+1) \operatorname {BesselI}\left (a,2 \sqrt {x}\right )\right )} \\ y(x)\to \frac {x^a \left (\sqrt {x} \operatorname {BesselI}\left (a-1,2 \sqrt {x}\right )-a \operatorname {BesselI}\left (a,2 \sqrt {x}\right )+\sqrt {x} \operatorname {BesselI}\left (a+1,2 \sqrt {x}\right )\right )}{2 \operatorname {BesselI}\left (a,2 \sqrt {x}\right )} \\ \end{align*}