Internal
problem
ID
[10056]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
42
Date
solved
:
Tuesday, January 28, 2025 at 04:15:32 PM
CAS
classification
:
[_Abel]
\begin{align*} y^{\prime }-x \left (x +2\right ) y^{3}-\left (x +3\right ) y^{2}&=0 \end{align*}
Time used: 0.003 (sec). Leaf size: 53
\[
\frac {\frac {\sqrt {2+\left (x^{2}+2 x \right ) y}}{2}+\left (\operatorname {arctanh}\left (\frac {\sqrt {y}\, x}{\sqrt {2+\left (x^{2}+2 x \right ) y}}\right )+c_{1} \right ) \sqrt {y}}{\sqrt {y}} = 0
\]
Time used: 0.710 (sec). Leaf size: 485
\[
\text {Solve}\left [c_1=-\frac {\frac {i \sqrt {\frac {2}{\pi }} \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}} \left (\frac {\sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}-\cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}-\frac {i \sqrt {\frac {2}{\pi }} \left (\frac {x+1}{2}+\frac {1}{2}\right ) \sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}}{\frac {i \sqrt {\frac {2}{\pi }} \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}} \left (i \sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )-\frac {i \cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}-\frac {\sqrt {\frac {2}{\pi }} \left (\frac {x+1}{2}+\frac {1}{2}\right ) \cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}},y(x)\right ]
\]