59.1.502 problem 518

Internal problem ID [9674]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 518
Date solved : Wednesday, March 05, 2025 at 07:57:14 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \end{align*}

Maple. Time used: 0.654 (sec). Leaf size: 231
ode:=2*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+x*(11*x^2+11*x+9)*diff(y(x),x)+(7*x^2+10*x+6)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 x +i \sqrt {3}+1\right )^{\frac {5 \sqrt {3}+3 i}{6 \sqrt {3}+6 i}} \left (-2 x +i \sqrt {3}-1\right )^{\frac {64 i \sqrt {3}+2368}{\left (\sqrt {3}+i\right )^{3} \left (i-\sqrt {3}\right )^{4} \left (13 \sqrt {3}+9 i\right )}} {\mathrm e}^{-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{6}} \left (\operatorname {HeunG}\left (\frac {\sqrt {3}+i}{i-\sqrt {3}}, 0, 0, \frac {5}{2}, \frac {1}{2}, \frac {5 \sqrt {3}+3 i}{3 \sqrt {3}+3 i}, -\frac {2 x}{1+i \sqrt {3}}\right ) c_{1} \sqrt {x}+\operatorname {HeunG}\left (\frac {\sqrt {3}+i}{i-\sqrt {3}}, -\frac {64}{\left (i \sqrt {3}-1\right )^{3} \left (i-\sqrt {3}\right )^{4}}, \frac {1}{2}, 3, \frac {3}{2}, \frac {5 \sqrt {3}+3 i}{3 \sqrt {3}+3 i}, -\frac {2 x}{1+i \sqrt {3}}\right ) c_{2} x \right )}{x^{{5}/{2}} \left (x^{2}+x +1\right )^{{1}/{4}}} \]
Mathematica. Time used: 0.367 (sec). Leaf size: 135
ode=2*x^2*(1+x+x^2)*D[y[x],{x,2}]+x*(9+11*x+11*x^2)*D[y[x],x]+(6+10*x+7*x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {K[1] (7 K[1]+3)+1}{4 K[1] \left (K[1]^2+K[1]+1\right )}dK[1]-\frac {1}{2} \int _1^x\left (\frac {K[2]+1}{K[2]^2+K[2]+1}+\frac {9}{2 K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {7 K[1]^2+3 K[1]+1}{4 K[1] \left (K[1]^2+K[1]+1\right )}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(x**2 + x + 1)*Derivative(y(x), (x, 2)) + x*(11*x**2 + 11*x + 9)*Derivative(y(x), x) + (7*x**2 + 10*x + 6)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False