7.14.1 problem 1

Internal problem ID [426]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 1
Date solved : Monday, January 27, 2025 at 02:53:34 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 31

Order:=6; 
dsolve((x^2-1)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (x^{4}+x^{2}+1\right ) y \left (0\right )+\left (x^{5}+x^{3}+x \right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 26

AsymptoticDSolveValue[(x^2-1)*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (x^5+x^3+x\right )+c_1 \left (x^4+x^2+1\right ) \]