Internal
problem
ID
[9695]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
539
Date
solved
:
Wednesday, March 05, 2025 at 07:57:35 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=3*x^2*(-x^2+2)*diff(diff(y(x),x),x)+x*(-11*x^2+1)*diff(y(x),x)+(-5*x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=3*x^2*(2-x^2)*D[y[x],{x,2}]+x*(1-11*x^2)*D[y[x],x]+(1-5*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*(2 - x**2)*Derivative(y(x), (x, 2)) + x*(1 - 11*x**2)*Derivative(y(x), x) + (1 - 5*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False