60.1.88 problem 88

Internal problem ID [10102]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 88
Date solved : Monday, January 27, 2025 at 06:27:36 PM
CAS classification : [_Riccati]

\begin{align*} 2 y^{\prime }-3 y^{2}-4 a y-b -c \,{\mathrm e}^{-2 a x}&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 256

dsolve(2*diff(y(x),x) - 3*y(x)^2 - 4*a*y(x) - b - c*exp(-2*a*x)=0,y(x), singsol=all)
 
\[ y = \frac {-{\mathrm e}^{-a x} \left (\operatorname {BesselY}\left (-\frac {\sqrt {4 a^{2}-3 b}-2 a}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right ) c_{1} +\operatorname {BesselJ}\left (-\frac {\sqrt {4 a^{2}-3 b}-2 a}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right )\right ) \sqrt {3}\, \sqrt {c}-\left (\sqrt {4 a^{2}-3 b}+2 a \right ) \left (\operatorname {BesselY}\left (-\frac {\sqrt {4 a^{2}-3 b}}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right ) c_{1} +\operatorname {BesselJ}\left (-\frac {\sqrt {4 a^{2}-3 b}}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right )\right )}{3 \operatorname {BesselY}\left (-\frac {\sqrt {4 a^{2}-3 b}}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right ) c_{1} +3 \operatorname {BesselJ}\left (-\frac {\sqrt {4 a^{2}-3 b}}{2 a}, \frac {\sqrt {3}\, \sqrt {c}\, {\mathrm e}^{-a x}}{2 a}\right )} \]

Solution by Mathematica

Time used: 1.848 (sec). Leaf size: 2746

DSolve[2*D[y[x],x] - 3*y[x]^2 - 4*a*y[x] - b - c*Exp[-2*a*x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Too large to display