7.3.8 problem 8

Internal problem ID [48]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.4 (separable equations). Problems at page 43
Problem number : 8
Date solved : Tuesday, March 04, 2025 at 10:40:31 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=2 x \sec \left (y\right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=diff(y(x),x) = 2*x*sec(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arcsin \left (x^{2}+2 c_1 \right ) \]
Mathematica. Time used: 0.251 (sec). Leaf size: 12
ode=D[y[x],x]==2*x*Sec[y[x]]; 
DSolve[ode,y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \arcsin \left (x^2+c_1\right ) \]
Sympy. Time used: 0.235 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x/cos(y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \pi - \operatorname {asin}{\left (C_{1} + x^{2} \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (C_{1} + x^{2} \right )}\right ] \]