60.1.100 problem 100

Internal problem ID [10114]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 100
Date solved : Monday, January 27, 2025 at 06:28:00 PM
CAS classification : [_rational, [_Riccati, _special]]

\begin{align*} x y^{\prime }+x y^{2}+a&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 59

dsolve(x*diff(y(x),x) + x*y(x)^2 + a=0,y(x), singsol=all)
 
\[ y = \frac {\sqrt {a}\, \left (\operatorname {BesselJ}\left (0, 2 \sqrt {a}\, \sqrt {x}\right ) c_{1} +\operatorname {BesselY}\left (0, 2 \sqrt {a}\, \sqrt {x}\right )\right )}{\sqrt {x}\, \left (c_{1} \operatorname {BesselJ}\left (1, 2 \sqrt {a}\, \sqrt {x}\right )+\operatorname {BesselY}\left (1, 2 \sqrt {a}\, \sqrt {x}\right )\right )} \]

Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 289

DSolve[x*D[y[x],x] + x*y[x]^2 + a==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2 \sqrt {a} \sqrt {x} \operatorname {BesselY}\left (0,2 \sqrt {a} \sqrt {x}\right )+2 \operatorname {BesselY}\left (1,2 \sqrt {a} \sqrt {x}\right )-2 \sqrt {a} \sqrt {x} \operatorname {BesselY}\left (2,2 \sqrt {a} \sqrt {x}\right )-i \sqrt {a} c_1 \sqrt {x} \operatorname {BesselJ}\left (0,2 \sqrt {a} \sqrt {x}\right )-i c_1 \operatorname {BesselJ}\left (1,2 \sqrt {a} \sqrt {x}\right )+i \sqrt {a} c_1 \sqrt {x} \operatorname {BesselJ}\left (2,2 \sqrt {a} \sqrt {x}\right )}{4 x \operatorname {BesselY}\left (1,2 \sqrt {a} \sqrt {x}\right )-2 i c_1 x \operatorname {BesselJ}\left (1,2 \sqrt {a} \sqrt {x}\right )} \\ y(x)\to \frac {\sqrt {a} \sqrt {x} \operatorname {BesselJ}\left (0,2 \sqrt {a} \sqrt {x}\right )+\operatorname {BesselJ}\left (1,2 \sqrt {a} \sqrt {x}\right )-\sqrt {a} \sqrt {x} \operatorname {BesselJ}\left (2,2 \sqrt {a} \sqrt {x}\right )}{2 x \operatorname {BesselJ}\left (1,2 \sqrt {a} \sqrt {x}\right )} \\ \end{align*}