7.14.8 problem 8

Internal problem ID [433]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 8
Date solved : Monday, January 27, 2025 at 02:53:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (-x^{2}+2\right ) y^{\prime \prime }-x y^{\prime }+16 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 39

Order:=6; 
dsolve((2-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (2 x^{4}-4 x^{2}+1\right ) y \left (0\right )+\left (x -\frac {5}{4} x^{3}+\frac {7}{32} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue[(2-x^2)*D[y[x],{x,2}]-x*D[y[x],x]+16*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {7 x^5}{32}-\frac {5 x^3}{4}+x\right )+c_1 \left (2 x^4-4 x^2+1\right ) \]