60.1.121 problem 122

Internal problem ID [10135]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 122
Date solved : Monday, January 27, 2025 at 06:29:26 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right )&=0 \end{align*}

Solution by Maple

Time used: 0.010 (sec). Leaf size: 16

dsolve(x*diff(y(x),x) + (sin(y(x))-3*x^2*cos(y(x)))*cos(y(x))=0,y(x), singsol=all)
 
\[ y = \arctan \left (\frac {x^{3}+2 c_{1}}{x}\right ) \]

Solution by Mathematica

Time used: 1.936 (sec). Leaf size: 53

DSolve[x*D[y[x],x] + (Sin[y[x]]-3*x^2*Cos[y[x]])*Cos[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \arctan \left (x^2+\frac {c_1}{2 x}\right ) \\ y(x)\to -\frac {1}{2} \pi \sqrt {\frac {1}{x^2}} x \\ y(x)\to \frac {1}{2} \pi \sqrt {\frac {1}{x^2}} x \\ \end{align*}