Internal
problem
ID
[9755]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
599
Date
solved
:
Wednesday, March 05, 2025 at 07:58:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=9*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+3*x*(13*x^2+7*x+1)*diff(y(x),x)+(25*x^2+4*x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=9*x^2*(1+x+x^2)*D[y[x],{x,2}]+3*x*(1+7*x+13*x^2)*D[y[x],x]+(1+4*x+25*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2*(x**2 + x + 1)*Derivative(y(x), (x, 2)) + 3*x*(13*x**2 + 7*x + 1)*Derivative(y(x), x) + (25*x**2 + 4*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False