60.1.131 problem 132

Internal problem ID [10145]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 132
Date solved : Monday, January 27, 2025 at 06:29:54 PM
CAS classification : [_Bernoulli]

\begin{align*} 3 x y^{\prime }-3 x \ln \left (x \right ) y^{4}-y&=0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 160

dsolve(3*x*diff(y(x),x) - 3*x*ln(x)*y(x)^4 - y(x)=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {2^{{2}/{3}} {\left (-x \left (6 \ln \left (x \right ) x^{2}-3 x^{2}-4 c_{1} \right )^{2}\right )}^{{1}/{3}}}{6 \ln \left (x \right ) x^{2}-3 x^{2}-4 c_{1}} \\ y &= -\frac {2^{{2}/{3}} {\left (-x \left (6 \ln \left (x \right ) x^{2}-3 x^{2}-4 c_{1} \right )^{2}\right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{12 \ln \left (x \right ) x^{2}-6 x^{2}-8 c_{1}} \\ y &= \frac {2^{{2}/{3}} {\left (-x \left (6 \ln \left (x \right ) x^{2}-3 x^{2}-4 c_{1} \right )^{2}\right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{12 \ln \left (x \right ) x^{2}-6 x^{2}-8 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.240 (sec). Leaf size: 120

DSolve[3*x*D[y[x],x] - 3*x*Log[x]*y[x]^4 - y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {(-2)^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}} \\ y(x)\to \frac {2^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}} \\ y(x)\to -\frac {\sqrt [3]{-1} 2^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}} \\ y(x)\to 0 \\ \end{align*}