7.14.10 problem 10

Internal problem ID [435]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 10
Date solved : Monday, January 27, 2025 at 02:53:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 3 y^{\prime \prime }+x y^{\prime }-4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 39

Order:=6; 
dsolve(3*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {2}{3} x^{2}+\frac {1}{27} x^{4}\right ) y \left (0\right )+\left (x +\frac {1}{6} x^{3}+\frac {1}{360} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue[D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{40}+\frac {x^3}{2}+x\right )+c_1 \left (\frac {x^4}{3}+2 x^2+1\right ) \]