60.1.149 problem 150

Internal problem ID [10163]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 150
Date solved : Monday, January 27, 2025 at 06:30:35 PM
CAS classification : [_linear]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 23

dsolve((x^2+1)*diff(y(x),x) + 2*x*y(x) - 2*x^2=0,y(x), singsol=all)
 
\[ y = \frac {2 x^{3}+3 c_{1}}{3 x^{2}+3} \]

Solution by Mathematica

Time used: 0.035 (sec). Leaf size: 25

DSolve[(x^2+1)*D[y[x],x] + 2*x*y[x] - 2*x^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {2 x^3+3 c_1}{3 x^2+3} \]